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A high-speed high-sensitivity swept source optical coherence tomography (SSOCT) system using a high
speed swept laser source is developed. Non-uniform discrete fourier transform (NDFT) method is intro-
duced in the SSOCT system for data processing. Frequency calibration method based on a Mach-Zender
interferometer (MZI) and conventional data interpolation method is also adopted in the system for com-
parison. Optical coherence tomography (OCT) images from SSOCT based on the NDFT method, the MZI
method, and the interpolation method are illustrated. The axial resolution of the SSOCT based on the
NDFT method is comparable to that of the SSOCT system using MZI calibration method and conventional
data interpolation method. The SSOCT system based on the NDFT method can achieve higher signal
intensity than that of the system based on the MZI calibration method and conventional data interpolation
method because of the better utilization of the power of source.
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Optical coherence tomography (OCT)[1] is a noninva-
sive and noncontact imaging modality that can pro-
vide micrometer scale cross sectional images of tissue
microstructure[2,3]. Recently, applications of Fourier do-
main methods to OCT have attracted much attention
because of its significant improvements in detection sen-
sitivity and imaging speed[4,5]. A variation of Fourier do-
main OCT called swept source OCT (SSOCT) measures
the backscattered sample information using a laser source
whose frequency is rapidly swept with time[6]. Cross sec-
tional images of biology tissue is obtained by Fourier
transform of the interference fringe signals.

In order to implement discrete Fourier transform to the
discrete sampled data, fast Fourier transform (FFT) al-
gorithm has been widely applied in SSOCT system. One
requirement of using FFT is that the sampled data must
be equally spaced in the frequency domain (k-space), oth-
erwise, image quality in terms of resolution, sensitivity,
and absolute measures would be degraded. However,
directly sampled raw data in a SSOCT system is not
equally spaced in k-space because of frequency nonlin-
earity verse time of its swept laser source.

In order to reach the best image quality, calibrating
the raw data from non-uniformly spaced one to equally
spaced one in k-space is necessary. In recent literatures,
several approaches for frequency calibration for SSOCT
have been demonstrated. One of them is the simulta-
neous frequency monitoring method using a fiber Fabry-
Perot (FFP) interferometer[7] to calibrate the interfer-
ence data, in which a portion of the light source is in-
troduced into the FFP to generate series of peak signals.
Via simultaneously detecting and storing the OCT in-
terference signal and FFP signal, calibration parameters
can be calculated using the output signal of FFP, and
then the linearly frequency spaced data can be acquired
using the calibration parameters. This method requires a
high-end analog/digital (A/D) converter and large mem-
ory space to store the two signals. The frequency even

clock method[8] is similar to the simultaneous frequency
monitoring method, but the output from an FFP or a
fiber Bragg grating (FBG) is monitored by a photo detec-
tor and converted to a transistor-transistor logic (TTL)
pulse train, which is used as a sampling clock signal of
an A/D converter which detects the interference signal.
This method does not store the FFP/FBG output in the
memory, but still requires expensive FFP/FBG. Data in-
terpolation method is a conventional software method to
calibrate the interference spectrum signal. The method
does not need FFP/FBG, and in this method, the de-
tector signal is sampled in constant time intervals and
nonlinearly in k-space, and then the interference signal is
interpolated to get data equally spaced in k-space[9]. Hu-
ber et al. demonstrated a fast calibration and rescaling
algorithm by using a FFP and a nearest neighbor check
algorithm[10]. This method is capable of high-speed cali-
bration because of the elaborated algorithm, but a FFP
device is still required.

As mentioned above, the hardware calibration meth-
ods based on FFP/FBG require expensive FFP/FBG
and additional storing space, and the software calibra-
tion method has a drawback of interpolation inaccuracy.
Therefore in this letter, we introduce a non-uniform dis-
crete fourier transform (NDFT) method and apply it pro-
cess raw data of OCT interference signal without any ad-
ditional expensive calibration device.

Firstly we briefly review the definition of Fourier trans-
form in the continuous domain and discrete domain. The
Fourier transform of a time signal f(t) in the continuous
domain is defined by

F (ω) =

∫ +∞

−∞

f(t)e−jωtdt, (1)

where ω = 2πf and f is the temporal frequency. The ex-
tension of Eq. (1) to the discrete domain is called discrete

1671-7694/2009/100941-04 c© 2009 Chinese Optics Letters



942 CHINESE OPTICS LETTERS / Vol. 7, No. 10 / October 10, 2009

Fourier transform (DFT), which is given by

F (m) =

N−1
∑

n=0

f(tn)e−j 2π

N
mn, (2)

where m = 0, 1, . . . , N − 1 and {f(tn)} is N samples of
the signal f(t) taken at regular intervals.

Now we generalize the definition of the Fourier trans-
form from the regular sampling to the irregular sampling.
The definition of the non-uniform discrete fourier trans-
form (NDFT) is given by[11]

F (m) =

N−1
∑

n=0

f(tn)e−jm 2π

T
tn , (3)

where m = 0, 1 . . . , N − 1, T is the range of the exten-
sion for the samples, and tn is temporal coordinate of
the arbitrary signal sample points, with t ∈ [0, T ]. Con-
sider the differences between the definition of DFT and
NDFT, firstly, the samples in the frequency are taken at
intervals 2π/T in the irregular case instead of 2π/N in
the regular case; secondly, the irregular sampling coor-
dinate tn appears in the exponent instead of the integer
index n in the regular case.

In the practical SSOCT case, the Fourier transform
from interference spectrum signal to sample depth infor-
mation is given by

i(k) = S(k)
∑

i

2ai cos(2kzi + φ(zi))
FT
−→

I(z) =
∑

i

aiΓ(z − zi)+
∑

i

aiΓ(z + zi), (4)

where S(k) is the power spectrum of the swept source,
ai and zi are reflectance and position of scatters within
the sample, φ(zi) represents the phase of the reflectance
profile of the sample, and Γ(z) represents the envelope
of the coherence function of the source. In Eq. (4),
wave number of the swept source and imaging depth is
a pair of Fourier transform. Due to the nonlinear rela-
tionship between the wave number and time of the swept
source output and linear data acquisition with time, the
wave number of the sampled interference spectrum sig-
nal is unequally spaced distributed. In this case, the
samples are taken irregularly in the wave number do-
main (k-space) but regularly taken in the depth domain
(z-domain). That is to say the regularly taken samples
I(z) in z-domain have a fixed interval ∆z given by

∆z =
2π

K
, (5)

where K is the wave number range of the sampled
interference spectrum signal. The expression of the
non-uniform discrete fourier transform in the practical
SSOCT data processing is

I(zm) =

N−1
∑

n=0

i(kn)e−j 2π

K
knzm , m = 0, 1, · · ·N − 1, (6)

where zm is the depth coordinate, i(kn) is the sampled
interference spectrum signal, kn is the wave number of

the sampled interference spectrum signal. Equation (6)
can be written in matrix form as

I = Di, (7)

where

I =









I(z0)
I(z1)
...
I(zN−1)









, (8)

i =









i(k0)
i(k1)
...
i(kN−1)









, (9)

D =















1 1 · · · 1
p−1
0 p−1

1 · · · p−1
N−1

p−2
0 p−2

1 · · · p−2
N−1

...
...

. . .
...

p
−(N−1)
0 p

−(N−1)
1 · · · p

−(N−1)
N−1















, (10)

and pn is expressed by

pn = exp(j
2π

K
kn), n = 0, 1, · · ·N − 1. (11)

The matrix D has a special form called Vander Monde
matrix and fully determined by N points. The determi-
nant of D is given by

det(D) =
∏

i6=j,i>j

(p−1
i − p−1

j ). (12)

Hence, D is nonsingular for any N distinct sampling
points, and the NDFT uniquely exists[12].

According to Eq. (6), the accuracy of NDFT depends
largely on the accuracy of the wave number of the sam-
pled interference signal kn, which can be achieved ac-
cording to the relationship between the wave number and
time. The output of the swept source must be calibrated
accurately. According to the wave number function and
sampling rate, we get the series of accurate kn and the
wave number range K of the swept source.

For comparison with the NDFT method, we also in-
troduce another two data processing methods. One is
a frequency calibration method applied to the SSOCT
system by adding an additional device, a Mach-Zender
interferometer (MZI), and the nearest neighbor check
algorithm[10]. The other one is a conventional data in-
terpolation method.

The SSOCT experimental setup is shown in Fig. 1.
The output of the light source (HSL2000, Santec Inc.)
passes through the 50/50 fiber couplers 2 and 3 into the
reference arm and sample arm, respectively. The sample
arm is constituted by a fiber collimator, an achromatic
lens of 40-mm focal length, and an electrical motorized
translation stage. Backscattered light from the sample
returns to the fiber coupler 3. The reference arm has a
polarization controller, a fiber collimator, a focusing lens,
and a plane mirror (RM). A balance detector (BPD) de-
tects interference light signals and converts them into
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voltage signals. One analog input channel of the data
acquisition card (National Instruments, model NI5122)
digitizes the voltage signal. Then the sampled data rep-
resenting one OCT image is transferred to the computer
memory. After data processing and image reconstruc-
tion, we get tomographic image of biological tissue sam-
ples.

When we use the MZI to calibrate the interference spec-
trum signal in real time, as shown in Fig. 1. Within
the dashed-line box, a part of the output is introduced
through fiber coupler 1 (10/90) to the MZI. The MZI sig-
nal is sampled by the second input channel of the DAQ
card synchronously at a 100-MS/s sampling rate. By us-
ing the nearest neighbor check algorithm[10], N equidis-
tant sample points are obtained. OCT image could be
reconstructed by these calibrated data through FFT al-
gorithm.

When we use the NDFT method, the whole original
sample points are firstly stored in the hard disk of per-
sonal computer (PC). Then these data are processed us-
ing NDFT by a MATLAB program.

From the test report of the light source, the wave num-
ber function k(t) can be a prior known parameter fitted
by a cubic polynomial as

k(t) = at3 + bt2 + ct + d. (13)

The result of curve fitting and the value of the fitted
coefficients a, b, c, and d are shown in Fig. 2. The result
demonstrates that the cubic polynomial fitting matches
well with the experimental wave number data of the
swept source.

Fig. 1. SSOCT system setup using NDFT algorithm and MZI
calibration method (with and without the frame of the dashed
line, respectively).

Fig. 2. Curve fitting result of wave number function of the
swept source.

To determine the axial resolution of the SSOCT system
based on the NDFT method, we investigated the axial
point spread function (PSF) by measuring the A-line
profile of a partially reflecting mirror sample (95% reflec-
tivity). A representative of a PSF at the depth of 510 µm
from the zero-delay point is depicted in Fig. 3. From the
graph, we can recognize that the resolution achieves 8.3
µm, while theoretical resolution with Gaussian spectrum
is 7.2 µm based on the 107-nm bandwidth of the swept
source.

To compare the axial resolution of SSOCT system us-
ing NDFT method, MZI calibration method, and data
interpolation method, we measure the PSF of the SSOCT
system with a mirror sample at the depth of 318 µm, us-
ing the three methods, respectively. Wherein, the data
interpolation uses a conventional cubic spline to interpo-
late the raw sample data.

The axial resolution results are shown in Fig. 4 and
Table 1. The resolution using NDFT method is 8.1 µm,
and is comparable with that of using MZI calibration
method. The axial resolution using conventional data
interpolation method is 9.5 µm, and is a bit lower than
that of using NDFT method. Moreover, the signal in-
tensity of the SSOCT system using NDFT method is
higher than that of using MZI calibration method and
data interpolation method because of better utilization
of the power of the source. The sensitivity of the SSOCT
system with NDFT method can reach 113 dB approxi-
mately.

To compare the feasibility of the NDFT method with
that of MZI calibration method and data interpolation
method in biological imaging, we obtaine images of a
shrimp in vivo. Figure 5(a) is the picture of the sample
under imaging. The black line in the picture marks the
lateral scanning direction and position. The OCT image
of the neck area of the shrimp sample based on NDFT
method, MZI calibration method, and data interpolation
method are shown in Fig. 5(b), (c), and (d) for compar-
ison, respectively.

Table 1. Axial Resolution Comparison Results
Using Four Different Methods

Method NDFT MZI Data Direct

Interpolation FFT

Axial

Resolution (µm) 8.1 8.1 9.5 23.3

Intensity (a.u.) 1 0.8 0.9 0.6

Fig. 3. Representative of PSF at depth of 510 µm.
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Fig. 4. PSF measured using different methods.

Fig. 5. (a) Shrimp under imaging, (b) OCT image of neck of
shrimp based on NDFT method, (c) MZI calibration method,
(d) conventional data interpolation method, (e) direct FFT
from sampled raw data.

From the images above, we can confirm that the im-
age from NDFT method (Fig. 5(b)) has the comparable
resolution with that of the MZI calibration method (Fig.
5(c)). And the resolution of the NDFT image is a bit
higher than that of the image from data interpolation
method because of interpolation error. Figure 5(b) dis-
plays more detailed information at larger depth position
than that of Fig. 5(c) because of higher sensitivity.

For the case of uniform DFT used in MZI calibra-
tion and interpolation methods, the well established FFT
could be used; in contrast, the computational complex-
ity of the NDFT method is O(nlog2n)[13]. Therefore, in
the shrimp images construction, the computation time of
the CPU in NDFT method is about four times compared
with the uniform DFT method. However, the higher per-
formance of PC and a more elaborated NDFT algorithm
could make up for the overall computational complexity.

In summary, NDFT method is introduced and imple-
mented in our SSOCT system for image reconstruction.
Using the method, high sensitivity and high resolution
images have been obtained. The swept source OCT
based on NDFT has an axial resolution of 8.1 µm. The
axial resolution is comparable with that of the SSOCT
system using MZI calibration method and conventional
data interpolation method. Based on the NDFT method,
SSOCT system achieves a higher signal intensity because
of better utilization of swept source power. The SSOCT
system based on the NDFT method does not need addi-
tional calibration device. In comparison with MZI cal-
ibration method, NDFT method brings cost reduction
and simplified system configuration. A modified NDFT
method based on weighted non-uniform Fourier trans-
form is under investigation.
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ural Science Foundation of China (Nos. 60378041 and
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